Toxin-deficient mutants from a toxin-sensitive transformant of Cochliobolus heterostrophus.
نویسندگان
چکیده
Tox1 is the only genetic element identified which controls production of T-toxin, a linear polyketide involved in the virulence of Cochliobolus heterostrophus to its host plant, corn. Previous attempts to induce toxin-deficient (Tox-) mutants, using conventional mutagenesis and screening procedures, have been unsuccessful. As a strategy to enrich for Tox- mutants, we constructed a Tox1+ strain that carried the corn T-urf13 gene (which confers T-toxin sensitivity) fused to a fungal mitochondrial signal sequence; the fusion was under control of the inducible Aspergillus nidulans pelA promoter which, in both A. nidulans and C. heterostrophus, is repressed by glucose and induced by polygalacturonic acid (PGA). We expected that a transformant carrying this construction would be sensitive to its own toxin when the T-urf13 gene was expressed. Indeed, the strain grew normally on medium containing glucose but was inhibited on medium containing PGA. Conidia of this strain were treated with ethylmethanesulfonate and plated on PGA medium. Among 362 survivors, 9 were defective in T-toxin production. Authenticity of each mutant was established by the presence of the transformation vector, proper mating type, and a restriction fragment length polymorphism tightly linked to the Tox1+ locus. Progeny of each mutant crossed to a Tox1+ tester segregated 1:1 (for wild type toxin production vs. no or reduced toxin production), indicating a single gene mutation in each case. Progeny of each mutant crossed to a Tox1- tester segregated 1:1 (for no toxin production vs. no or reduced toxin production) indicating that each mutation mapped at the Tox1 locus. Availability of Tox- mutants will permit mapping in the Tox1 region without interference from a known Tox1 linked translocation breakpoint.
منابع مشابه
Iron Specifically Protects Corn Protoplasts from T-Toxin of Cochliobolus heterostrophus.
Ferric ion reduced the damaging effects of T-toxin, a series of linear beta-polyketols produced by the pathogenic fungus Cochliobolus heterostrophus, on leaf mesophyll protoplasts from susceptible T-cytoplasm corn. Of nine metals tested, only ferric and ferrous ions had this effect. Despite the presence of 12 available oxygen atoms in each T-toxin molecule, there was no evidence for the formati...
متن کاملChLae1 and ChVel1 Regulate T-toxin Production, Virulence, Oxidative Stress Response, and Development of the Maize Pathogen Cochliobolus heterostrophus
LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male st...
متن کاملTwo polyketide synthase-encoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus.
Cochliobolus heterostrophus race T, causal agent of southern corn leaf blight, requires T-toxin (a family of C35 to C49 polyketides) for high virulence on T-cytoplasm maize. Production of T-toxin is controlled by two unlinked loci, Tox1A and Tox1B, carried on 1.2 Mb of DNA not found in race O, a mildly virulent form of the fungus that does not produce T-toxin, or in any other Cochliobolus spp. ...
متن کاملA ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize.
ToxA, the first discovered fungal proteinaceous host-selective toxin (HST), was originally identified in 1989 from the tan spot fungus Pyrenophora tritici-repentis (Ptr). About 25years later, a homolog was identified in the leaf/glume blotch fungus Stagonospora nodorum (Parastagonospora nodorum), also a pathogen of wheat. Here we report the identification and function of a ToxA-like protein fro...
متن کاملHost physiology and pathogenic variation of Cochliobolus heterostrophus strains with mutations in the G protein alpha subunit, CGA1.
Conserved eukaryotic signaling proteins participate in development and disease in plant-pathogenic fungi. Strains with mutations in CGA1, a heterotrimeric G protein G alpha subunit gene of the maize pathogen Cochliobolus heterostrophus, are defective in several developmental pathways. Conidia from CGA1 mutants germinate as abnormal, straight-growing germ tubes that form few appressoria, and the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 137 3 شماره
صفحات -
تاریخ انتشار 1994